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Abstract—Problems of parameter variations are a main topic in 
current research and will gain importance in future technology 
generations due to the continuing scaling. Therefore, it requires 
appropriate timing analysis which is traditionally done with cor-
ner-case simulations. These are quite conservative and pessimistic 
approaches. In contrast, new statistical static timing analysis 
(SSTA) algorithms offer a more accurate prediction of the timing 
behavior of circuit designs. Further, correlations between various 
parameters and devices can be observed. Unfortunately, the SSTA 
algorithms mostly require high computational effort and accurate 
library characterization.  This paper proposes an approach for a 
fast statistical static timing analysis (F-SSTA) with moderate re-
quirements on computation time and library characterization. The 
approach considers the analysis of gates with multiple inputs. The 
simulation results show an average error of 5 % compared to 
Monte-Carlo simulations but a significant speed improvement of 
around 20 times compared to a highly accurate SSTA algorithm. 

I. INTRODUCTION 
Aggressive downscaling of CMOS devices in each technol-

ogy generation results in rising integration density and perform-
ance. At the same time, the influence of parameter variations 
also increases drastically [1]. This is due to different effects as 
fluctuations of process parameters, temperature, or supply volt-
age. As a consequence, changes occur in transistor characteris-
tics, which might cause longer delay and higher power dissipa-
tion. This again results in a high uncertainty about the design 
and manufacturing conditions which is the reason for unneces-
sary over-design and underperformance of circuits [2,3]. 

Hence, statistical static timing analysis (SSTA) has been 
recommended by a great amount of researchers over the past 
years [3]-[7]. SSTA offers an accurate characterization of timing 
behavior. Further, correlations between varying parameters and 
gates can be observed. In [3], Orshansky presents a general 
framework for SSTA. Agarwal et al. propose in [4] approaches 
to handle SSTA on multiple input gates. 

Three of the main problems of current SSTA algorithms are 
high characterization efforts for the gates, long run-times, and 
the data-dependent timing of gates with multiple inputs. The 
purpose of this paper is the presentation of a fast SSTA (F-
SSTA) algorithm, with only moderate deviations compared to 
results from Monte-Carlo simulations. Section 2 introduces the 
differences between common deterministic and new statistical 
timing analyses. Section 3 presents an approach for a simplified 
gate delay characterization under several parameter variations. 
Sections 4 and 5 propose a method to handle correlations be-

tween varying gates, and a method for timing analysis of gates 
with multiple inputs, respectively. Finally, section 6 contains a 
comparison of the proposed F-SSTA and a highly accurate 
SSTA, while section 7 draws the conclusion. 

II. TIMING ANALYSIS 

A.  Corner-case Static Timing Analysis 
The concern of worst-case static timing analysis (STA) is 

the evaluation of the guaranteed circuit performance. This 
knowledge is necessary to integrate circuits into complex design 
environments. STA can be performed at different design levels 
but the timing analysis at gate level offers the best trade-off 
between evaluation time and accuracy. 

Corner-case STA is a common approach to handle parame-
ter variations. This approach applies gate libraries with corner-
case models. This means, each gate is characterized for most 
important parameter sets to extract its behavior for typical, 
worst and best conditions. At timing analysis, signal arrival 
times of the gate outputs are estimated by adding the gate delay 
to the signal arrival time at the inputs. Thereby, the worst-case 
design delay is estimated for each gate set to its maximum delay 
value.  

In current and future technologies with heavy parameter 
variations corner-case STA results in very pessimistic prediction 
of performance [2,3,5]. One reason is that STA assumes all pa-
rameters of all gates in worst-case at the same time. However, 
the amount of parameters which influence the delay is growing. 
Hence, the worst-case probability decreases. Thus, the designs 
are produced for a case which has a very low probability. Fur-
ther, STA leads to an underestimation of performance. This is 
based on the assumption of perfect correlation of delay response 
sensitivity of each gate to variation in each parameter with all 
other delay elements [3]. Additionally, STA completely ignores 
intra-die variations [4].  

B. Statistical Static Timing Analysis 
Statistical static timing analysis (SSTA) offers a probability 

based prediction of timing behavior and taking intra-die varia-
tions into consideration. Gate delay td of SSTA is described as a 
probabilistic function which is mostly formulated as Gaussian 
distribution. Hence, signal arrival times are also modeled as 
probabilistic functions. The delay variability can be described 
with probability density functions (PDF) or cumulative prob-
ability distribution functions (CDF). The PDF is the probability 
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that a signal arrival time or a gate delay has the value t. In con-
trast, a CDF describes the probability that the signal arrival time 
or the gate delay is lower than a given value t. Thus, the CDF is 
equal to the probability density. It is: 
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Here, µ is the mean value and σ is the standard deviation. 
For a simple Inverter the arrival time tout of the output signal 
results from: 

tout tin Inverterμ μ μ= +  (3) 

2 2
tout tin Inverterσ σ σ= +  (4) 

Here, µtout and µtin are the mean values of the arrival times of 
the output and the input signal. Further, σtout and σtin are the 
standard deviations of both arrival times. Additional, µInverter and 
σInverter are the mean value and the standard deviation of the In-
verter delay, respectively.  

C. Monte-Carlo simulations 
If a random parameter set is applied for the system simula-

tion this is referred as Monte-Carlo simulation [3]. That means 
for timing analysis every gate is defined with different parame-
ters which have an influence on gate delay. A sufficient amount 
of Monte-Carlo simulations (here: 1000) of the same system 
allows a very accurate determination of the probability behavior 
of the timing. Unfortunately, the expenditure of time for Monte-
Carlo simulations is very high.  

III. MODELING OF GATE VARIATIONS 
The delay td of a CMOS device can be modeled with the al-

pha-power law model as [6]: 
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where k’ is a technology constant, Vdd is the supply voltage, 
W and Leff are gate width and effective length, respectively, CL is 
the load, and α models the short channel effects. The threshold 
voltage Vth can be modeled as:  

Here, T is the operating temperature, n is the sub-threshold 
swing coefficient, Vth0 is the zero-bias threshold voltage, Vbs is 
the bulk-source voltage, Vds is the drain-source voltage, η’ mod-
els the drain induced barrier lowering effect, and γ’ regards the 
body-bias effect. The terms q and kb correspond to physical con-
stants (electron charge, and Boltzmann’s constant, respectively). 
NDEP labels the channel doping concentration, and Tox the thick-
ness of the oxide layer. Except for the physical constants all 
other parameters can vary. From these, the parameters NDEP, Tox, 
Leff, and W have the highest influence on delay [7]. 

To model parameter variations common approaches vary 
technology or transistor parameters like gate length Leff or gate 

width W which strongly impact gate delay [7][8]. Then, gate 
delay is described as a function of the varying parameters. This 
allows an accurate mathematical formulation of the problem. 
But, computational effort increases drastically with each addi-
tional parameter. Thus, for a fast timing analysis an easy to han-
dle gate delay model is required which considers all possibly 
varying parameters with low computational effort.  

All varying parameters which correspond to the gate delay 
can be described as Gaussian distributions. This bases on the 
fact that the variations are expected to be truly random in na-
ture [9]. Hence, the multiplications in (5) turn into convolutions 
of Gaussian distributions. As the convolution of Gaussian distri-
butions results in new Gaussian distributions the gate delay td 
can be approximated as Gaussian distribution with: 
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P(td) is the probability that the gate delay has the value td. 
The parameters µG and σG result from Monte-Carlo transistor 
level simulations of the gates. Thereby, the values of all varying 
parameters are formulated as Gaussian distributions. Thus, this 
approach applies the high accuracy of transistor simulation 
models. Further, the influence of all varying parameters can be 
observed with constant effort for the analysis. Figure 1 depicts 
the results of a Monte-Carlo analysis and the proposed approach 
for an inverter and a NAND2 gate. The parameters Leff, W, NDEP, 
and Tox of each transistor are assumed to show 10 % variation. 
The results indicate that the differences between Monte-Carlo 
transistor level simulations and the Gaussian gate delay model 
are very small. 

This gate level approach has three drawbacks. First, it is not 
possible to change the area in which the parameter varies. How-
ever, without the temperature all parameters variations are tech-
nology dependent and consequently fixed. Thus, a temperature 
factor should be explored in future works. The second drawback 
regards the load and the input slopes with which the gate is 
simulated. Thus, as in standard gate libraries the gates have to 
be characterized for different loads and input slopes. The last 
drawback is the observation of inter-gate and inter-parameter 
correlations, respectively. Thus, the next section proposes a 
solution for handling correlations between gates.  

IV. TIMING ANALYSIS OF MULTI-INPUT GATES 
Next, the proposed approach is extended to multi-input 

switching (MIS). A very common approach for evaluating out-
put signal arrival time at multi-input gates is the creation of ta-
bles which include the results for different combinations of in-
put signal arrival times [9]. In [4] gates with multiple inputs are 
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Figure 1.  Gaussian description of gate delay compared to Monte-Carlo 
simulations 
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divided into single input gates. Both approaches offer good re-
sults. However, both techniques considerably increase complex-
ity or require extensive library characterization. Thus, the fol-
lowing approach combines good accuracy and low efforts in 
characterization and complexity. 

The arrival time of the output signal of a multi-input gate’s 
results from the convolution of the input signal PDFs or the 
multiplication of the input signal CDFs. Unfortunately, both 
operations do not result in a Gaussian distribution. Hence, the 
output signal can only be approximated. The new approach pro-
poses a merging of the CDFs of the arrival times of the input 
signals. This is done by a piecewise linearization and multiplica-
tion of all inputs CDF. Thus, based on the values of µ and σ the 
input signal CDFs are characterized with some pairs of time 
values tx and its corresponding probabilities P(tx). These points 
are connected by linear functions y = mx + n.  

It can be observed that the shape of a CDF depends on σ 
only. Thus, the rising factor m of a linear function between two 
points can be modeled as a constant ψ divided by σ:   
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As the n factor of the linear functions is directly connected 
to the mean value µ a basic CDFbasic has to be characterized 
only. From this, the piecewise approximation of all input’s CDF 
can be extracted with the standard deviation σ of the CDFs.  

The function points of the output signal’s CDF result from 
the multiplication of these approximations. It has to be observed 
that all CDFs are characterized at same probability values (like 
P = 0.1, P = 0.5, etc.) but different time values. However, only 
points with equal time values tx can be multiplied. This demands 
an equalization of the time values of the piecewise modeled 
CDFs by linear approximation. The procedure is as follows: 

1) Based on the basic function CDFbasic every input function 
CDFin is separated in linear parts. The points results from:  

, , , ,( ) ( )CDFin x CDFin x CDFbasic x CDFbasic xP t P t=  (9) 

, ,CDFin x CDFin CDFin CDFbasic xt tμ σ= + ⋅  (10) 

Here, tCDFin,x are the time values of CDFin which has the 
same probability density values as the time values tCDFbasic,x 
of the basic function. 

2) All corresponding points of the input functions are equal-
ized to same tx values. Therefore, the CDF with the highest 
t value at a probability density of P(t) = 1 is the reference 

function CDFref. The linear approximation of the new 
points of the other CDFs occurs with:  
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Here, tref is the time value of CDFref. Pnew(tref) is the ap-
proximated probability density value of a CDFin at tref. tlo is 
the time value of the CDFin which is the closest lower value 
than tref. In contrast, thi is the closest larger time value than 
tref. P(tlo) and P(thi) are the probability density values which 
correspond to the time values tlo and thi. 

3) All corresponding probability density values of the input 
CDFs are multiplied to get a new modified input 
CDFin,mod. This means for all time points which are mod-
eled by the reference CDFref:  
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Figure 1 depicts an example for the extraction of a merged 
CDFin,mod of  two CDFs. The result is a piecewise linear 
CDFin,mod which results from the multiplication of arrival times 
of all input signals. As next, µin and σin has to be extracted. In a 
CDF, the mean value µ is equal to the time value which has a 
probability density of 0.5. That means: 

( ) 0.5     with  µ µP t t µ= =  (13) 

tµ is determined by the approximation of the piecewise linear 
description of the output function. Thus, the algorithm continues 
as follows: 

4) Linear approximation of the expected value µout of the 
output signal’s arrival time:  
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Here, µin is the mean value of the modified input signal’s 
CDFin,mod. Pin<0.5 and Pin>0.5 are the probability density val-
ues of CDFin,mod which are close to P = 0.5. t<0.5 and t>0.5 are 
the corresponding time values. Next, the estimation of the 
standard deviation σin of CDFin,mod is extracted by the esti-
mation of relatively standard deviation σrel for each pair of 
the piecewise linear CDFin,mod. Thereby, each σrel value is 
determined relatively to the basic CDFbasic. The next steps 
are: 

5) For every probability density value which is determined in 
CDFbasic the corresponding time value tin,x of CDFin,mod is 
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Figure 2.  Extraction of the modified input function CDFin,mod (a) and  estimation of the mean value µ of CDFin,mod (b) 
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approximated. This is done like in step 4. Then, a relative 
time value trel is estimated for every tin,mod,x value with: 

, ,rel x in x int t μ= −  (15) 

6) Based on these values, for each pair a standard deviation 
value σrel,x which is relatively to the standard deviation 
σbasic of CDFbasic can be estimated. This means:  

,
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Here, tbasic,x is the time value which has the same  prob-
ability density as to trel,x.  

7) The standard deviation σin of the modified arrival time of 
the input signal is the medium value of all σrel,x. Hence:  
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Here, nσ is the number of σrel,x values different from 0.  After 
the extraction of µin and σin the arrival time of the output signal 
of the multi-input gate can be estimated as for an Inverter (see 
equ. 3 and 4). 

V. SIMULATION RESULTS 
The new F-SSTA algorithm was tested with different con-

figurations of a ten gates deep tree circuit. The applied gates 
base on predictive technology models (BPTM) [10]. Thereby, 
transistor parameters NDEP, Tox, Leff, and W were modeled as 
Gaussian distribution (σ = 5% of µ). All gates were character-
ized using the proposed method (see section 3). The new algo-
rithm is compared with the SSTA algorithm from Agarwal et al. 
[4] (named AG-SSTA in the following). Thus, the worst-case 
delay of the chain was estimated with Monte Carlo simulations, 
with the proposed F-SSTA algorithm, with the AG-SSTA algo-
rithm, and with a common STA algorithm (System: 1.8 GHz 
AMD, Suse Linux 10.0, Java 1.4). At every simulation the de-
lay99.9 % value was estimated. This value indicates when the de-
sign’s maximum delay is with a probability of 99.9 % lower 
than delay99.9%. Thereby, the delay99.9% value of the Monte Carlo 
simulations is the reference. Hence, the differences between the 
delay99.9% values of the Monte Carlo simulation and the (S)STA 
algorithms indicate the error of the (S)STA algorithms. A posi-
tive error means an overestimation while a negative error shows 
an underestimation of the delay. 

The analysis of the tree circuit reveals the accuracy of the 
proposed algorithm. Thereby, the maximum error of the 
F-SSTA algorithm is 8 % while the average error is 5 %. In 
contrast, the AG-SSTA algorithm has an average error of -3 %. 
This underestimation should not happen as this failure predic-
tion can decrease the reliability of the designs. Finally, the STA 
algorithm has a maximum error of 20 % and an average error of 
16 %. The comparison of all runtimes indicates STA as the fast-
est algorithm with an average runtime of 60 ms. However, the 
average runtime of the proposed algorithm is with 73 ms only 
slightly longer. In contrast the average runtime of the AG-SSTA 
(1942 ms) is more than 20 times longer. Hence, the proposed F-
SSTA algorithm offers are very good tradeoff between evalua-
tion time and accuracy. It has to be noted that the error is always 
positive. Thus, the calculated delay of the F-SSTA algorithm is 
overestimated which is a prerequisite for a reliable design. 

VI. CONCLUSIONS 
This paper proposes the F-SSTA algorithm for fast statisti-

cal static timing analysis to handle parameter variations in up-
coming technologies. It applies a Gaussian description of all 
gate delays which results from Monte Carlo simulations on tran-
sistor level. Thus, all varying parameters can be observed. Fur-
ther, the algorithm offers the analysis of gates with multiple 
inputs. Simulation results prove that the proposed F-SSTA algo-
rithm has an error lower than 10 % compared to Monte-Carlo 
simulations. Furthermore, the evaluation time is more than 20 
times faster compared to an accurate SSTA algorithm.  
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TABLE I. SIMULATION RESULTS OF A TREE CIRCUIT WHEREAS THE 
DELAY99.9% VALUE IS THE DELAY WITH A PROBABILITY OF 99.9% AND 
THE ERROR99.9% VALUE IS THE DIFFERENCE OF THE DELAY99.9% VALUE 
COMPARED TO THE VALUE OF THE MONTE-CARLO SIMULATIONS. THE 
DIFFERENT CASES REPRESENT DIFFERENT COMBINATIONS OF DATA 
ARRIVAL TIMES FOR THE INPUTS OF THE TREE STRUCTURE. 

  Case 1 Case 2 Case 3 
μ 1052 ps 975 ps 1001 ps
σ 32 ps 35 ps 38 ps

delay99.9% 1148 ps 1082 ps 1115 ps

Monte-Carlo  

Time 20 min 21 min 19 min
μ 1082 ps 1039 ps 1039 ps
σ 33 ps 42 ps 42 ps

delay99.9% 1182 ps 1166 ps 1166 ps
error99.9% 3.0 % 7.8 % 4.6 %

F-SSTA 

Time 70 ms 80 ms 70 ms
μ 1044 ps 969 ps 989 ps
σ 27 ps 27 ps 27 ps

delay99.9% 1125 ps 1050 ps 1070 ps
error99.9% -2.0 % -3.0 % -4.2 %

AG-SSTA [4]

Time 1423 ms 1421 ms 1482 ms
T 1295 ps 1295 ps 1295 ps

error99.9% 13 % 20 % 16 %
STA 

Time 60 ms 60 ms 60 ms


